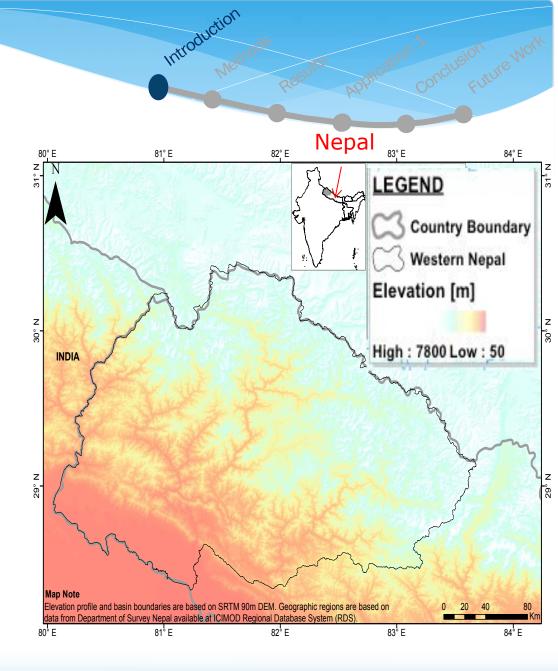


Projected future climate for Western Nepal

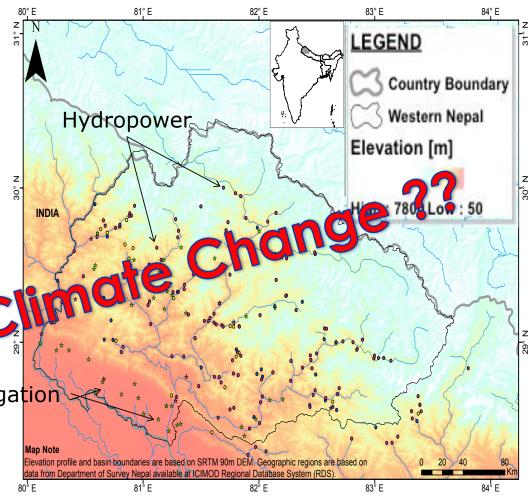
Sanita Dhaubanjar, Vishnu Prasad Pandey, Luna Bharati


International Water Management Institute (IWMI)

Friday, 4 May 2018

Western Nepal

- Headwater of the Ganga basin
- Remote communities vulnerable to climate change
- Steep terrain with rich biodiversity



www.iwmi.org

Western Nepal

- Headwater of the Ganga basin
- Remote communities vulnerable to climate change
- Steep terrain with rich biodiversity
- Planned hydropover and irrigion projects Irrigation

Introduction

www.iwmi.org

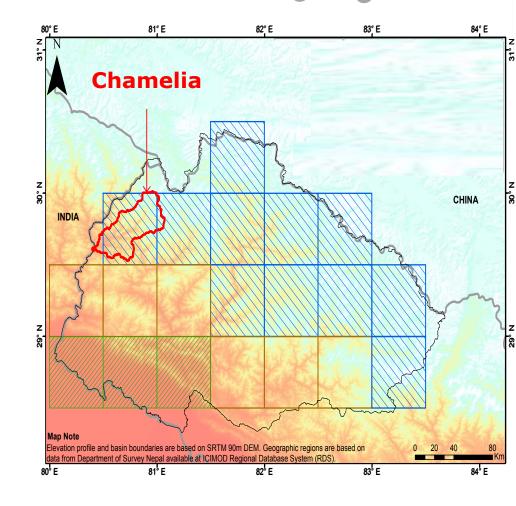
Climate Projections

• Regional Climate Model (RCM)s are key for future projections

Introduci

- Application of RCM at local scale is difficult:
 - Many to choose from
 - Limited skill and resources to handle/process RCMs
- Prior assessments provide limited help:
 - Address regional scales over long time-frames
 - Assess climate parameters separately
 - Consider different ensembles

Objectives


- Develop a single framework to assess projections across
 - -all available RCMs
 - -multiple parameters (precipitation, min/max temperature)
- Work at finer spatial and temporal scales

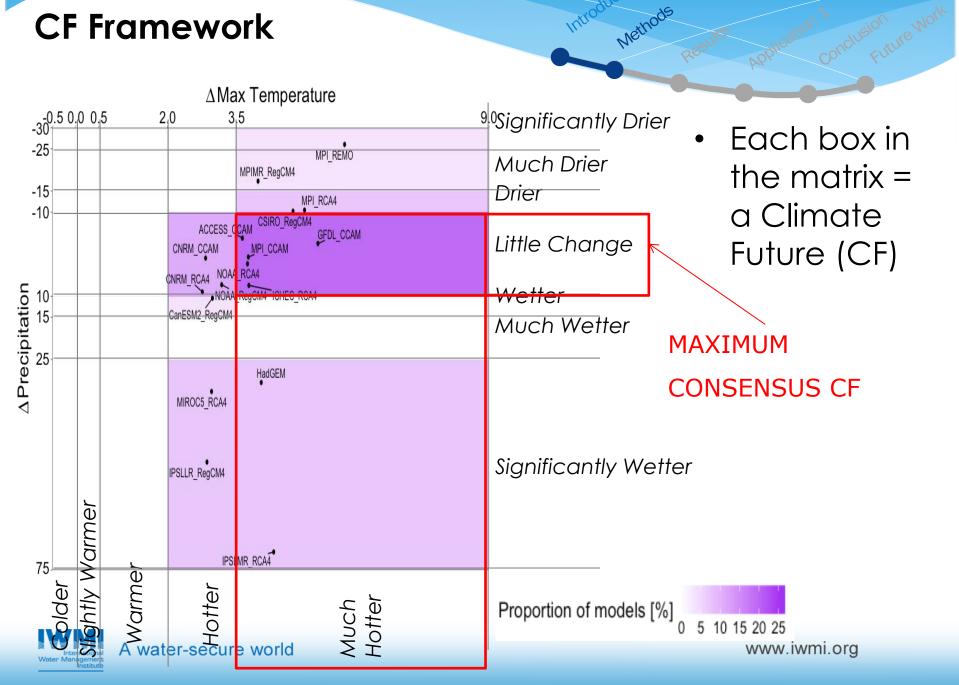
Develop SIMPLE visual climate future matrices as tools for RCM selection

Methods

- Spatial disaggregation:
 Mountain, hill, terai
- Temporal disaggregation:
 - -Three 25 yr timeframes
 - –Near, Mid and Far
- 19 CORDEX-SA* products:
 - -6 RCMs and 14 GCMs
 - -2 RCPs in each RCM
- Example: Climate impact assessment in Chamelia

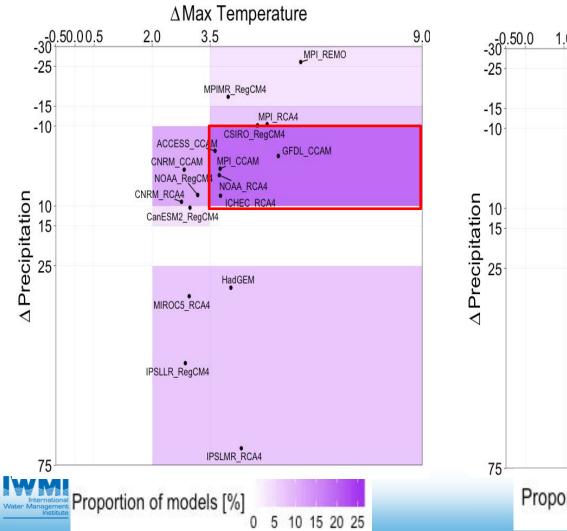
*CORDEX-SA: CoOrdinated Regional Downscaling Experiment – South Asia A water-secure world www.iwmi.org

Climate Futures (CF) Framework

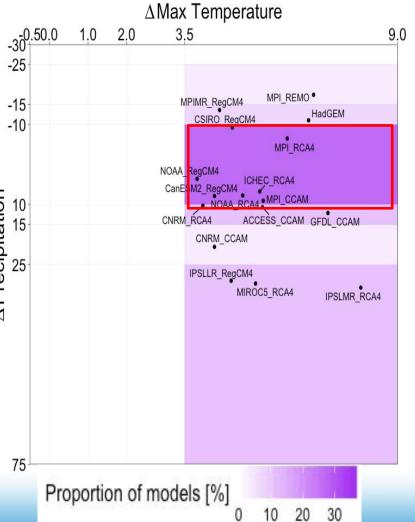

- From CSIRO Clarke et al., (2011); Whetton et al. (2012)
- 1. Plot annual average changes across parameters
 - -Max temperature and total precipitation
 - -For each RCM,

Change: Δ = [historical – future time-frame]

- 2. Classify Δ into qualitative categories
- 3. Identify RCMs that fall into climate future of interest

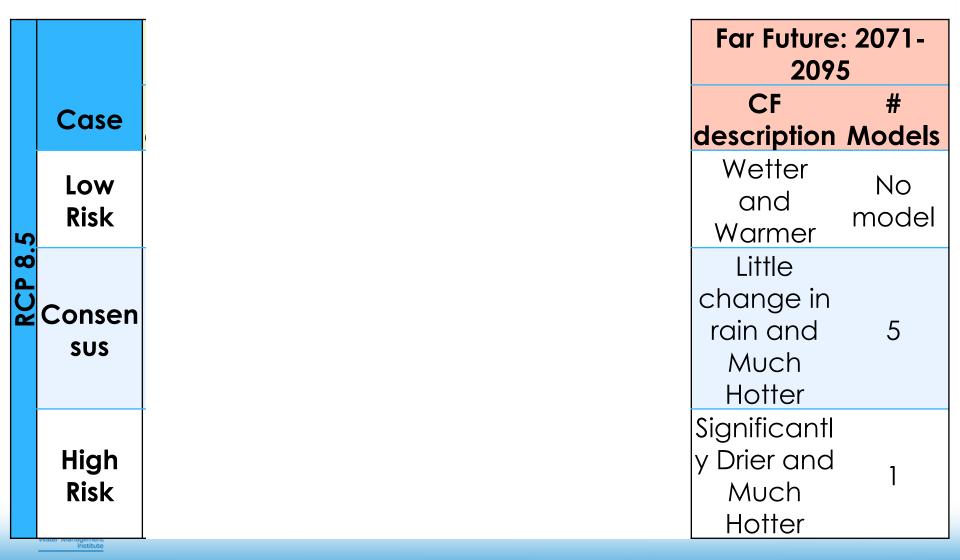

CF Framework

Methode


CF for Western Nepal under RCP 8.5, far future [2070-2095]

TERAI

MOUNTAIN


Conclusion Future Work

Selected CF for RCP 8.5

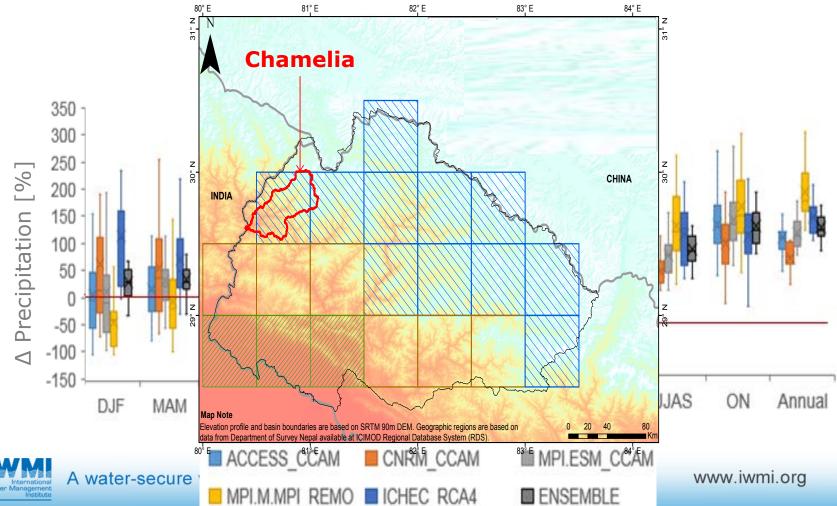
TERAI

Results

Selected CF for RCP 8.5

MOUNTAINS

			Near Future: 2021- 2045		Mid Future: 2046- 2070		Far Future: 2071- 2095	
RCPA5		Case	CF description	# Models	CF description	# Models	CF description	# Models
		Low Risk	Wetter and Warmer	1	Wetter and Warmer	No model	Wetter and Warmer	No model
	し	Consen sus	Little change in rain and Warmer	10	Little change in rain and Hotter	8	Little change in rain and Much Hotter	7
		High Risk	Much Drier and Hotter	No model	Much Drier and Hotter	No model	Much Drier and Much Hotter	1


conclusion Future Work

Results

Chamelia Climate Assessment under RCP 8.5, far future [2070-2095]

 Hydrological modeling with RCM bias corrected using quantile mapping

Application 1 Conclusion North

Conclusions

- Trends noticed:
 - Δ temperature increases consistently
 - Δ precipitation is less variable in mountains than in terai
 - ΔT and P correlate best between hills and terai
- Visualized range of predictions help narrow the list of RCMs
 - 18 CFs matrices for 3 regions x 2 RCPs x 3 time-frames
 - Hydrological modelling for Chamelia basin
- Further processing of selected RCMs is needed prior to application

Future Work

- Improve visualization to represent range in each RCM
- Analyze seasonal or monthly change
 - Annual analyses may average out seasonal changes and extremes
- Expand database to include GCMs in same framework

Future Work

Acknowledgements

- This research study is funded by:
 - Sustainable, just and productive water resources development in Western
 Nepal (Digo Jal Bikas) project, under the generous support of the
 American people through the United States Agency for International
 Development (USAID). The contents are the responsibility of the authors
 and do not necessarily reflect the views of USAID or the United States
 Government.

Fytra

 Building Climate Resilience of Watersheds in Mountain Eco-regions (BCRWME) - Package 2: Watershed Hydrology Impact Monitoring Research project, in collaboration between (IWMI) and the Government of Nepal (GoN) Department of Soil Conservation and Watershed Management (DSCWM), supported by the Asian Development Bank (ADB), Nordic Development Fund (NDF) and Climate Investment Fund.

References

- Whetton, P., Hennessy, K., Clarke, J., McInnes, K., Kent, D., 2012. Use of Representative Climate Futures in impact and adaptation assessment. Clim. Change 115, 433–442. doi:10.1007/s10584-012-0471-z
- Clarke, J.M., Whetton, P.H., Hennessy, K.J., 2011. Providing Application-specific Climate Projections Datasets: CSIRO's Climate Futures Framework. MODSIM2011, 19th Int. Congr. Model. Simul. 2683–2687. doi:10.13140/2.1.1915.2649

www.iwmi.org

Extra

Precipitation and Temperature Classes

A Precipitatio	on Classes	A Temperature Classes		
Description	Range	Description	Range	
Significantly Drier	∆ pr < -25%	Colder	∆ † < 0°C	
Much Drier	-25% ≤ ∆ pr < -15%	Slightly Warmer	0≤ ∆ †< 0.5°C	
Drier	-15% ≤ ∆ pr < -10%	Warmer	0.5 °C ≤ ∆ † < 2.0 °C	
Little change	-10% ≤ ∆ pr < 10%	Hotter	2.0 °C ≤ ∆ † < 3.5 °C	
Wetter	10% ≤ ∆ pr < 15%	Much Hotter	Δ † ≥ 3.5 °C	
Much Wetter	15% ≤ ∆ pr < 25%			
Significantly Wetter	∆ pr ≥ 25%			

Considered RCMs from CORDEX-SA

	CORDEX South Asia RCM	Driving GCM	RCM Description	Contributing RCM Modeling Center
1	CSIRO-CCAM-1391M	ACCESS1.0	Conformal Cubical Atmospheric Model	Commonwealth Scientific and
2	CSIRO-CCAM-1391M	CNRM-CM5	- CCAM (McGregor and Dix, 2001)	Industrial Research Organisation
3	CSIRO-CCAM-1391M	GFDL-CM3	1	(CSIRO), Marine and Atmospheric
4	CSIRO-CCAM-1391M	MPI-ESM-LR		Research, Melbourne, Australia
5	CSIRO-CCAM-1391M	NorESM-M		
6	HadGEM3-RA	HadGEM2-AO	HadGEM3 Regional Atmospheric model	Met Office Hadley Centre (MOHC), UK
7	IITM-RegCM4	CCCma-CanESM2	The Abdus Salam International Centre	Centre for Climate Change Research
8	IITM-RegCM4	CNRM-CM5	for Theoretical Physics (ICTP) Regional	(CCCR), Indian Institute of Tropical
9	IITM-RegCM4	CSIRO-Mk3.6	Climatic Model version 4 (RegCM4;	Meteorology (IITM), India
10	IITM-RegCM4	IPSL-CM5A-LR	Giorgi et al., 2012)	
11	IITM-RegCM4	MPI-ESM-MR	1	
12	IITM-RegCM4	NOAA-GFDL-GFDL-ESM2M	1	
13	MPI-CSC-REMO2009	MPI-ESM-LR	MPI Regional model 2009 (REMO2009; Teichmann et al., 2013)	Climate Service Center (CSC), Germany
14	SMHI-RCA4	CNRM-CM5	Rossby Centre regional atmospheric	Rosssy Centre, Swedish
15	SMHI-RCA4	ICHEC-EC-EARTH	model version 4 (RCA4; Samuelsson et	Meteorological and Hydrological
16	SMHI-RCA4	IPSL-CM5A-MR	al., 2011)	Institute (SMHI), Sweden
17	SMHI-RCA4	MIROC-MIROC5	011)	
18	SMHI-RCA4	MPI-ESM-LR]	
19	SMHI-RCA4	NOAA-GFDL-GFDL-ESM2M		

