COMPARATIVE ASSESSMENT OF VARIOUS WATER APPLICATION METHODS FOR IMPROVING WATER PRODUCTIVITY DURING DRY SEASON AGRICULTURE

Contributed by
Bhesh Raj Thapa, Michael Scobie, Rabindra Karki, Manita Raut, Ram C. Bastakoti, Emma Karki, Erik Schmidt

PRESENTED BY
Bhesh Raj Thapa, IWMI
Study Area

- Six Intervention sites
 - 2- Saptari, Nepal
 - 2- West Bangal, India
 - 2- Madhubani, India
 - DSI4MTF funded by ACIAR

- Three Intervention sites
 - 1- Mellekh, Doti, Nepal
 - 1- Punebata, Doti, Nepal
 - 1- Kuti, Kailali, Nepal
 - DJB funded by USAID
Context

- Large gap in access to land
- Large proportion - Landless, tenant, smallholder and Marginalized
Context

- Large gap in access to land
- Large proportion - Landless, tenant, smallholder and Marginalized

Farmer Typology

<table>
<thead>
<tr>
<th></th>
<th>Mellekh</th>
<th>Punebata</th>
<th>Kutti</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH with land</td>
<td>95%</td>
<td>90%</td>
<td>85%</td>
</tr>
<tr>
<td>HH without land</td>
<td>7%</td>
<td>20%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Types of Land Ownership

<table>
<thead>
<tr>
<th></th>
<th>Kuti</th>
<th>Mellekh</th>
<th>Punebata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own</td>
<td>100%</td>
<td>80%</td>
<td>75%</td>
</tr>
<tr>
<td>Rented in</td>
<td>0.0%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Rented out</td>
<td>0.0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Unregistered</td>
<td>0%</td>
<td>5%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Context

- Large proportion of land fallow in winter and summer.
- STW and pump ownership skewed towards large farmers.

Cropping Pattern

- Kanakpatti
- Koiladi
- Bhagwatipur
- Mahuyai
- Dholaguri
- UC

Legend:
- Cultivated
- Fallow
Motivation

- Low cropping intensity
- Large gap in access to land and water
 - Poor, landless, marginalized and tenant farmers
- Knowledge gap in Ag. water management
- Access to Gov. and Non-Gov. Institution

Research Question?

- Can farmer’s behavior change through techno-social intervention?
- Which type of water application methods is more suitable for efficient management of both water and energy?
Technical Intervention (What we did)

- Installation of Solar pump, Sun flower pump, Diesel pump, Electric Pump
- Promotion of Micro irrigation techniques and methods (Sprinkler, Drip, Furrow)
- Rehabilitation of available earthen ponds (for conjunctive use and reuse)
Social/Institutional Intervention (What we did)

Approach

- Collective farming models
 - Pure collective
 - Partial collective
- Group formation and strengthening through
 - Regular meeting
 - Intervention planning
 - Regular savings
- Capacity building – trainings and exchange visits
- Stakeholder consultation and engagement (including landlord)
Why understanding of irrigation demand is important?

- How much water the plant needs for optimum growth (Critical)
- Matching Supply to demand = efficient use of the resource (both water and energy)
What data we are collecting?

- Weather data (ET, R, T)
- Pond water level data
- Weekly water level data
- Data is entered into the DSI Applet “Water Level Tool”
What data we are collecting?

- Channel Loss assessment
- Pipe loss assessment
- Drip and sprinkler uniformity test
- Furrow assessment test
- Diesel pump assessment
- Solar pump test
- Economic data collection
Cropping system/pattern/intensity

• **Year 2015 (Beginning of the project)**— No crops (Fallow Land)

• **Year 2016**

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KP1F1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KP1F2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KP1F3</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KP1F4</td>
<td></td>
</tr>
</tbody>
</table>

• **Year 2017**

KP1F1	Egg plant	Cow pea	Tomato
KP1F2	Egg plant	Cow pea	Cauliflower
KP1F3	Egg plant	Zucchini	Egg plant
KP1F4	Tomato	Zucchini	Tomato

• **Similar situation in rest of the intervention sites**

• **Significant improvement in cropping system/pattern/intensity**

May 2-4, 2018, Kathmandu, Nepal
Change in Farmer’s behaviour

- Improved vegetable production
- Shifted irrigation methods
- Perception/Choice for
 - Crop selection
 - Irrigation method selection
 - Farming approach (shifted towards collective/semi collective)
- Regular communication with all the stakeholders
Conveyance Loss Assessments

What we have found??

<table>
<thead>
<tr>
<th>Location</th>
<th>Discharge at the pump (L/s)</th>
<th>Discharge after 100m of channel (L/s)</th>
<th>Discharge after 100m of 3” pipe (L/s)</th>
<th>Conveyance loss (L/s) Or reduced flow</th>
<th>Conveyance Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>5.7</td>
<td>3.0</td>
<td>2.7</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>5.7</td>
<td>5.1</td>
<td>0.6</td>
<td>89%</td>
<td></td>
</tr>
</tbody>
</table>

Channel losses are significant volume of water pumped
Irrigation Efficiency

Field Application Efficiency

<table>
<thead>
<tr>
<th>Combination</th>
<th>Drip</th>
<th>Furrow</th>
<th>Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drip</td>
<td>91%</td>
<td>57%</td>
<td>87.4%</td>
</tr>
<tr>
<td>Furrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprinkler</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Irrigation Efficiency

- **About 63% water can be saved for same quantity of water using drip in comparison with Furrow**

- **Earthen Canal + Furrow:** 32.49%
- **Pipe + Furrow:** 49.59%
- **Pipe + Drip kit:** 79.17%
- **Sprinkler:** 87.4%

Irrigation Efficiency

- Drip and furrow assessment for same plot (KH1F7): egg plant crop
 - Length: 20
 - Breadth: 13
 - No. of laterals: 26
 - R/R: 0.8
 - Total length of lateral: 338
 - No of emitter 40cm/cc: 482.8571429
 - P/P: 0.7
 - Depth of irrigation if applied same qty water as in furrow
 - Volume: 5656
 - Area of irrigation: 94.78875 plants/emitter
 - Depth of water: 59.66952829 mm
 - Depth of water by furrow: 21.75384615 mm
 - Water saved: 37.91568214 mm
 - Volume required to reached: 59.66952829 mm
 - 15514.0736 ltr
 - Saved water: 9858.077356 ltr
 - 63.54278846 %

8th ASIAN REGIONAL CONFERENCE
May 2-4, 2018, Kathmandu, Nepal
Crop Productivity

Production (Kg/mm) of irrigation

- It gives suitable crop list for farming with effective use of water

Production (Kg/Kattha) in Saptari, Nepal

We have found:

- Crop Productivity
 - Production (Kg/mm) of irrigation
 - Suitable crop list for farming with effective use of water
Crop Productivity

- It gives suitable seasonal crop, which may provide higher gross margin

What we have found??

Average gross margin by crop type

- Cauliflower
- Chilli
- Cowpea
- Cucumber
- Eggplant (brinjal)
- Gourd (bitter)
- Gourd (luffa)
- Gourd (sponge)
- Lady finger (okra)
- Lentil
- Moong
- Onion
- Peas
- Potato
- Radish
- Spinach
- Tomato

May 2-4, 2018, Kathmandu, Nepal
What we are planning??

- Recommendation of suitable farming approach based on the lesson learnt from different geographical and cultural settings
- Identification of best suited crops for efficient use of water to improve the water productivity for dry season agriculture
- Estimation of water productivity/unit of water in different water application method
- Disseminate the findings to farmers in understandable format, which will help them to change their behavior
THANK YOU FOR YOUR KIND ATTENTION

COMMENTS AND SUGGESTION PLEASE......