

COMPARATIVE ASSESMENT OF VARIOUS WATER APPLICATION METHODS FOR IMPROVING WATER PRODUCTIVITY DURING DRY SEASON AGRICULTURE

<u>Contributed by</u> Bhesh Raj Thapa, Michael Scobie, Rabindra Karki, Manita Raut, Ram C. Bastakoti, Emma Karki, Erik Schmidt

PRESENTED BY Bhesh Raj Thapa, IWMI

Study Area

ASIAN REGIONAL CONFERENCE

Context

large gap in access to land

Large proportion-Landless, tenant, smallholder and Marginalized

ASIAN REGIONAL

Large gap in access to land

Farmer Typology

Large proportion- Landless, tenant, smallholder and Marginalized

Context

Cropping Pattern

8thasian regional

Motivation

- Low cropping intensity
- Large gap in access to land and water
 Poor, landless, marginalized and tenant farmers
- Knowledge gap in Ag. water management
- Access to Gov. and Non-Gov. Institution

Can farmer's behavior change through techno-social intervention?

Which type of water application methods is more suitable for efficient management of both water and energy?

Technical Intervention (What we did)

Approach

- Installation of Solar pump, Sun flower pump, Diesel pump, Electric Pump
- Promotion of Micro irrigation techniques and methods (Sprinkler, Drip, Furrow)
- Rehabilitation of available earthen ponds (for conjunctive use and re use)

Social/Institutional Intervention (What we did) Approach

- Collective farming models
 - Pure collective Partial collective
- Group formation and strengthening through
 - Regular meeting Intervention planning Regular savings
- Capacity building trainings and exchange visits
- Stakeholder consultation and engagement (including landlord)

Why understanding of irrigation demand is important?

Approach

Knowledge gap in Ag. Water management

- How much water the plant needs for optimum growth (Critical)
- Matching Supply to demand = efficient use of the resource (both water and energy)

What data we are collecting?

< Back	Pump Asses	sment Tool	(
Date		10/12/2017			
Village					
Tube We	ell				
Pump Detail					
Pump Ty	pe				
RPM					
Discharging W	'orks 🕕				
Start Tim	ie				
Finish Tir	ne				
Elapsed	i				
Flow Reading					
Wa	ter Reading	Bucket Reading			

- Weather data (ET, R, T)
- Pond water level data
- Weekly water level data
- Data is entered into the DSI Applet "Water Level Tool"

What data we are collecting?

- Channel Loss assessment
- Pipe loss assessment
- Drip and sprinkler uniformity test
- Furrow assessment test
- Diesel pump assessment
- Solar pump test
- Economic data collection

Cropping system/pattern/intensity

What we have found??

• Year 2015 (Beginning of the project)- No crops (Fallow Land)

- Similar situation in rest of the intervention sites
- Significant improvement in cropping system/pattern/intensity

Change in Farmer's behaviour

- Improved vegetable production
- Shifted irrigation methods
- Perception/Choice for
 - Crop selection
 - Irrigation method selection
 - Farming approach (shifted towards collective/semi collective)
- Regular communication with all the stakeholders

What we have found??

Conveyance Loss Assessments

What we have found??

Location	Discharge at the pump (L/s)	Discharge after 100m of channel (L/s)	Discharge after 100m of 3" pipe (L/s)	Conveyance loss (L/s) Or reduced flow	Conveyance Efficiency (%)
B1	5.7	3.0		2.7	53%
B1	5.7		5.1	0.6	89%

Channel losses are significant volume of water pumped

Irrigation Efficiency

What we have found??

Field Application Efficiency			Drip and furrow assessment				
	Drip	Furro	N	Sprinkler		for same plot(KH1F7): egg plant crop	
	впр				lengh	20	
	040/			07 40/		breath	13
	91%	51%		87.4%		No. of lateral	26 R/R= 0.8
					• About 63%	Total lengh of lateral	338
Irrigation Efficiency		water can be	No of emitter 40cm/cc	482.8571429 P/P=0.7			
		water carrie		483 say			
		saved for same	Depth of irrigation if applied same				
				rrigation	augntity of water	Volume	5656
	Combination			efficiency	quantity of water		canopy * no of
			G		using drin in	Area of irrigation	94.78875 plants/emmitter
			cinciency		using unp in	Depth of water	59.66952829 mm
Earthen Cana		anal +		comparison with			
				32 49 %		Depth of water by	
	Furro	N		02110 /0	FULLOW	furrow	21.75384615 mm
	Pina + Fu	Irrow/		19 59%		Water saved	37.91568214 mm
	Fipe - I unow		49.0970		Volume required to		
		Pipe + Drip kit 79.17%	70 470/		reached	59.66952829 mm	
	Pipe + Dr		/9.1/%		Saved water	9858 077356 ltr	
							63.54278846 %
	Sprinkl	er		87.4%			

Crop Productivity

What we have found??

• It gives suitable crop list for farming with effective use of water

	16,000
It gives suitable seasonal crop,	12,000
which may	8,000
provide higher gross margin	4,000
	0

May 2-4, 2018, Kathmandu, Nepal

- Recommendation of suitable farming approach based on the lesson learnt from different geographical and cultural settings
- Identification of best suited crops for efficient use of water to improve the water productivity for dry season agriculture
- Estimation of water productivity/unit of water in different water application method
- Disseminate the findings to farmers in understandable format, which will help them to change their behavior

THANK YOU FOR YOUR KIND ATTENTION

COMMENTS AND SUGGESTION PLEASE.....

<complex-block>

ACKNOWLEDGEMENT

Australian Government

Australian Centre for International Agricultural Research

8thSIAN REGIONAL